

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 5475-5478

Tetrahedron Letters

Isolation and synthesis of a novel β-carboline guanidine derivative tiruchanduramine from the Indian ascidian Synoicum macroglossum^{*}

K. Ravinder, ^a A. Vijender Reddy, ^a P. Krishnaiah, ^a P. Ramesh, ^b S. Ramakrishna, ^a H. Laatsch ^b and Y. Venkateswarlu^{a,*}

^aNatural Products Laboratory, Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500 007, India ^bDepartment of Organic and Biomolecular Chemistry, University of Göttingen, Tammanstrasse 2, D-37077 Göttingen, Germany

> Received 26 April 2005; revised 9 June 2005; accepted 14 June 2005 Available online 1 July 2005

Abstract—The isolation and synthesis of the racemic form of a novel β -carboline guanidine alkaloid, tiruchanduramine, a potent α -glucosidase inhibitor from the Indian ascidian, *Synoicum macroglossum* has been achieved. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years marine ascidians have been the focus of intensive chemical investigation as they are very rich sources of biologically active secondary metabolites.¹ A major group of these metabolites are nitrogen containing compounds, particularly aromatic heterocycles. As part of our ongoing investigation on bioactive compounds from marine organisms² we describe the isolation of a novel β-carboline guanidine alkaloid tiruchanduramine 1 isolated from an ascidian Synoicum macroglossum, which was collected at Tiruchandur, Tamilnadu, India during February 2002. A literature survey revealed that the genus Synoicum has yielded several tetraphenolic bis-spiroketals and different rubrolides.³ In the present study the dichloromethane/ methanol (1:1) extract of the ascidian was partitioned between water and EtOAc. The water extract was freeze-dried, and the residue was triturated with MeOH. The soluble material was subjected to gel filtration

Keywords: Ascidian; *Synoicum macroglossum*; Tiruchanduramine; β-carboline; α-Glucosidase inhibitor.

[Sephadex LH-20, dichloromethane/methanol (1:1)], followed by silica gel column chromatography eluting with CHCl₃/MeOH 80:20 to yield tiruchanduramine 1.

Compound 1 was obtained as semi-solid, $[\alpha]_D + 31$ (c 0.5, MeOH) and showed a molecular mass ion at m/z 323 $[M+1]^+$, which afforded the formula $C_{17}H_{19}N_6O$ by HRFABMS (calcd 323.162, found 323.1613). The IR bands at $v_{\rm max}$ 3221 (NH), 1681 (guanidine) and 1622 (amide) pointed to a guanidine derivative, and UV absorptions at $\lambda_{\rm max}$ (MeOH) 215, 234, 270, 334 and 347 nm indicated the presence of a β -carboline chromophore. The structure of compound 1 was established by study of the 1H , ^{13}C and 2D NMR data.

The ¹H NMR spectrum of compound **1** (Table 1) showed signals at δ 8.20 (1H, d, J = 8.0 Hz), 7.28 (1H, t, J = 7.6 Hz), 7.58 (1H, t, J = 7.6 Hz) and 7.63 (1H, d, J = 8.0 Hz) for an *ortho*-disubstituted benzene ring. Two aromatic 1H singlets at δ 8.85, 8.81 and a D₂O exchangeable signal at δ 12.10 (1H, s) pointed together with the UV data to a 3- or 4-substituted β -carboline moiety,⁵ which was supported by the ¹³C NMR spectrum (Table 1). The ¹H NMR spectrum displayed further signals in the aliphatic region at δ 3.99 (1H, m), 3.77 (1H, t, J = 9.6 Hz), 3.25 (1H, dd, J = 8.2, 9.6 Hz), 3.42 (2H, m) and 1.82 (2H, m). The linear connectivity of these aliphatic signals was established by a H,H COSY spectrum. The ¹³C NMR spectrum (Table 1) of compound **1** displayed 17 carbon signals, which

^{*} IICT Communication No. 050603. This work was presented at the International Conference on Chemistry Biology Interface: Synergistic New Frontiers (CBISNF 2004) in New Delhi, India, November 21–26, 2004 and is dedicated to Professors Sukh Dev and Alan R. Katritzky on their outstanding contributions to organic chemistry.

^{*}Corresponding author. Tel.: +91 40 271 93167; fax: +91 40 271 60512; e-mail: luchem@iict.res.in

Table 1. NMR data of tiruchanduramine 1

Carbon #	¹³ C NMR ^a	1 H NMR $(J \text{ in Hz})^{\text{b}}$	H,H COSY	HMBC
1	132.2	8.85 (1H, s)	_	3, 4, 9a
2	_	_	_	_
3	139.5	_	_	_
4	113.9	8.81 (1H, s)	_	3, 10, 4b, 4a, 9a
4a	128.16	_	_	_
4b	120.9	_	_	_
5	122.1	8.20 (1H, d, J = 8.0)	6	4a, 8a, 7
6	119.9	7.28 (1H, t, J = 7.6)	5, 7	7, 8a, 8
7	128.5	7.58 (1H, t, J = 7.6)	6, 8	5, 8a
8	112.2	7.63 (1H, d, J = 8.0)	7	4b, 6
8a	141.0	_	_	_
9	_	12.10 (1H, br s)	_	_
9a	137.1	_	_	_
10	165.1	_	_	_
1'	_	8.84 (1H, s)	_	10
2'	35.2	3.42 (2H, m)	3′	10, 3', 4'
3'	34.9	1.82 (2H, m)	2', 4'	2', 4', 5'
4′	52.9	3.99 (1H, m)	3', 5'	3', 2', 5', 7'
5'	47.9	3.77 (1H, t, J = 9.6 Hz), 3.25 (1H, dd, J = 8.2, 9.6 Hz)	4′	4', 3', 7'
6',8',9'	_	7.80 (2H, br s)	_	
		8.18 (1H, br s)		
7′	159.2	_	_	_

^a 75 MHz.

included 11 aromatic and 4 aliphatic carbons, an amide carbonyl at δ 165.1 and a guanidine carbon at δ 159.2.

The structure of compound 1 was finally established by HMBC correlations. In the HMBC spectrum, the proton signals at δ 3.99 (4'-H, m), 3.77 (5'-H_A, t, J = 9.6 Hz) and 3.25 (5'-H_B, dd, J = 8.2, 9.6 Hz) showed cross-signals with the guanidine carbon C-7' at δ 159.2. The ¹H and ¹³C NMR signals of the side chain are comparable with the related guanidino amino acid in enduracidins. Further, in the HMBC spectrum, the signals at δ 3.42 (2'-H₂, m) and 8.81 (4-H, s) showed correlations with the carbonyl signal of C-10 at δ 165.1. From the foregoing spectral data, the structure of tiruchanduramine was confirmed as 1. Several ascidians, for exam-

ple, *Eudistoma olivaceum* are extraordinarily rich sources of bromo-, hydroxy-, pyrrolyl- and 1-pyrrolinyl-β-carbolines.⁷ Similarly, the ascidians *Eudistoma glaucus*⁸ and *Lissoclinum fragile*⁹ also contain β-carboline derived alkaloids. To the best of our knowledge β-carboline-3-carboxylates have not been reported from ascidians, however, the presence of β-carboline-3-carboxylates in human urine, brain tissue and bacteria is known.⁵ Tiruchanduramine 1 is the first natural product containing enduracididinamine, the decarboxylation product of enduracididine, a rare amino acid obtained by hydrolysis of enduracidin⁶ from *Streptomyces fungicidicus*. The absolute stereochemistry has not yet been established.

2. Synthesis of (±)-tiruchanduramine

In order to confirm the structure of tiruchanduramine, we have synthesized compound 1 in racemic form. The retrosynthetic analysis (Scheme 1) revealed three main fragments, β-carboline-3-carboxylic acid (A), aliphatic side chain (B) and guanidine (C). Fragment A was synthesized following a literature procedure ^{10,11} in good yields, starting from L-tryptophan. Fragment B was prepared from homoallyl alcohol (Scheme 2).

^b 300 MHz, DMSO-*d*₆.

Scheme 2. Reagents and conditions: (a) PMBBr, NaH, THF, 92%; (b) OsO₄, NMO, acetone/water 7:3, 70%; (c) 2,2-DMP, PTSA, 82%; (d) DDQ, DCM/water 9:1, 90%; (e) (i) *p*-TsCl, Py, 0 °C, 80%, (ii) NaN₃, DMF, 86%, (iii) 10% Pd/C, H₂, 92%.

Scheme 3. Reagents and conditions: (a) DCC, DMAP, DCM, 62% or EDCI, HOBT, dry DMF, 65%; (b) (Boc)₂O, Et₃N, DCM, 92%; (c) PPTSA, MeOH, 90%; (d) **9**, TPP, DEAD, THF, 52%; (e) 2 M HCl, MeOH, rt, 4 h 63%.

But-3-en-1-ol was protected with p-methoxybenzyl bromide to give compound **2**, which on dihydroxylation under standard conditions gave the diol **3**. The diol was then protected as the acetonide to give compound **4**. The p-methoxybenzyl group in **4** was removed using DDQ to give the primary alcohol **5**, which was converted into the amino-acetonide¹² **6** with in an overall yield of 37% (Scheme 2).

The amino-acetonide **6** and fragment A were coupled to give compound **7**, which was protected using Boc anhydride to yield compound **8**. The acetonide group in **8** was removed under acidic (PPTSA) conditions to afford the diol **9**.¹³ The diol **9** was reacted with N, N'N''-tri-Bocguanidine **10**¹⁴ under Mitsunobu conditions to give Bocprotected tiruchanduramine **11** in 52% yield. Finally, the Boc groups were deprotected under acidic conditions¹⁵ to give tiruchanduramine hydrochloride (**1**) (Scheme **3**), the NMR data of which were identical with those of the natural product.

Tiruchanduramine 1 showed promising α -glucosidase inhibitory activity (IC₅₀ 78.2 μ g/mL) as compared with acarbose¹⁶ at 100 μ g/mL as the standard.

Acknowledgements

We are thankful to Dr. V. K. Meenakshi, Department of Zoology, APC Mahalaxmi College for Women, Tuticorin 628 002, Tamilnadu, India, for identifying the ascid-

ian, the Department of Ocean Development, New Delhi, India, for financial assistance, Dr. J. S. Yadav, Director IICT for his constant encouragement, and UGC, CSIR, New Delhi, for providing fellowships to K.R. and A.V.R. and a Humboldt grant to P.R.

References and notes

- (a) Davidson, B. S. Chem. Rev. 1993, 93, 1771; (b) Faulkner, D. J. Nat. Prod. Rep. 1993, 10, 497, 1994, 11, 355; 1995, 12, 223; 1996, 13, 75; 1997, 14, 259; 1998, 15, 113; 1999, 16, 155; 2000, 17, 7; 2001, 18, 1; 2002, 19, 1.
- (a) Reddy, M. V. R.; Faulkner, D. J.; Venkateswarlu, Y.; Rao, M. R. *Tetrahedron* 1997, 53, 3457; (b) Reddy, M. V. R.; Rao, M. R.; Rhodes, D.; Hansen, M. S. T.; Rubbins, K.; Bhushman, F.; Venkateswarlu, Y.; Faulkner, D. J. *J Med. Chem.* 1999, 42, 1901.
- (a) Carroll, A. R.; Healy, P. C.; Quinn, R. J.; Tranter, C. J. Org. Chem. 1999, 64, 2680; (b) Ortega, M. J.; Zubia, E.; Ocana, J. M.; Naranjo, S.; Salva, J. Tetrahedron 2000, 56, 3963.
- Gozler, T.; Gozler, B.; Linden, A.; Hesse, M. Phytochemistry 1996, 43, 1425.
- Braestrup, C.; Nielsen, M.; Olsen, C. E. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 2288.
- 6. Horii, S.; Kameda, Y. J Antibiot. 1968, 21, 665.
- 7. Rinehart, K. L., Jr.; Kobayashi, J.; Harbour, G. C.; Gilmore, J.; Mascal, M.; Holt, T. G.; Shield, L. S.; Lafargue, F. J. Am. Chem. Soc. 1987, 109, 3378.
- 8. Kobayashi, J.; Cheng, J. F.; Ohta, T.; Nozoe, S.; Ohizumi, Y.; Sasaki, T. *J. Org. Chem.* **1990**, *55*, 3666.
- 9. Badre, A.; Boulanger, A.; Abou-Mansour, E.; Banaigs, B.; Combaut, G.; Francisco, C. J. Nat. Prod. 1994, 57, 528.

- (a) Brossi, A.; Focella, A.; Teitel, S. J. Med. Chem. 1973,
 16, 418; (b) Coutts, R. T.; Micetich, R. G.; Baker, G. B.;
 Benderly, A.; Dewhurst, T.; Hall, T. W.; Locock, A. R.;
 Pyrozko, J. Heterocycles 1984, 22, 131.
- Lippke, K. P.; Schunack, W. G.; Wenning, W.; Müller, W. E. J. Med. Chem. 1983, 26, 499.
- (a) Denis, J.-N.; Correa, A.; Greene, A. E. J. Org. Chem.
 1990, 55, 1957; (b) Fleming, P. R.; Sharpless, K. B. J. Org. Chem.
 1991, 56, 2869.
- 13. All the compounds gave satisfactory analytical and spectral data. Compound 7: Solid, mp 203–205 °C; IR (KBr): ν_{max} 3415, 1637, 1527, 1350, 1220 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.38 (3H, s), 1.46 (3H, s), 1.96 (2H, m), 3.65 (3H, m), 4.12 (1H, dd, *J* = 7.0, 6.0 Hz,), 4.28 (1H, m), 7.32–7.46 (1H, m), 7.60 (1H, m), 7.82 (1H, br t), 8.20 (1H, d, *J* = 8.0 Hz), 8.50 (1H, br t), 8.82 (1H, s), 8.9 (1H, s), 9.54 (1H, br s); FABMS: 340 (M⁺+1); HRMS, obsd *m/z* 340.4019 C₁₉H₂₂N₃O₃ requires *m/z* 340.4021 [M⁺+1];
- Compound **9**: Solid, mp 118.5 °C; IR (KBr): v_{max} 3424, 2939, 2361, 1734, 1671, 1528, 1455, 1356, 1281, 1155 cm⁻¹;

 ¹H NMR (400 MHz, CDCl₃): 1.72 (2H, m), 1.80 (9H, s), 2.36 (1H, br s), 3.08 (1H, br s), 3.44 (1H, m), 3.56 (1H, dd, J = 8.0, 6.4 Hz), 4.64 (1H, dd, J = 8.0, 2.0 Hz), 4.80 (1H, m), 4.00 (1H, m), 7.42 (1H, t, J = 7.0 Hz), 7.64 (1H, t, J = 7.0 Hz), 8.10 (1H, d, J = 7.0 Hz), 8.46 (1H, t, J = 7.0 Hz), 8.78 (1H, s), 9.42 (1H, s); ¹³C NMR: (75 MHz, MeOH- d_4): 27.9, 29.5, 34.1, 37.7, 67.3, 71.4, 86.7, 113.8, 117.3, 122.2, 124.5, 124.9, 131.1, 133.6, 137.1, 137.4, 140.4, 144.5, 151.2, 166.8; FABMS: 400 (M⁺+1); HRMS, obsd m/z 400.1872 C₂₁H₂₆N₃O₅ requires m/z 400.1879 [M⁺+1].
- 14. Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman, M. J. Org. Chem. 1998, 63, 8432.
- 15. Miller; Craig, A.; Batey, R. A. Org. Lett. 2004, 6, 699.
- Kim, J.-S.; Kwon, C.-S.; Son, K. H. Biosci. Biotechnol. Biochem. 2000, 64, 2458.